Description Link to heading
A frog is crossing a river. The river is divided into some number of units, and at each unit, there may or may not exist a stone. The frog can jump on a stone, but it must not jump into the water.
Given a list of stones
’ positions (in units) in sorted ascending order, determine if the frog
can cross the river by landing on the last stone. Initially, the frog is on the first stone and
assumes the first jump must be 1
unit.
If the frog’s last jump was k
units, its next jump must be either k - 1
, k
, or k + 1
units.
The frog can only jump in the forward direction.
Example 1:
Input: stones = [0,1,3,5,6,8,12,17]
Output: true
Explanation: The frog can jump to the last stone by jumping 1 unit to the 2nd stone, then 2 units to
the 3rd stone, then 2 units to the 4th stone, then 3 units to the 6th stone, 4 units to the 7th
stone, and 5 units to the 8th stone.
Example 2:
Input: stones = [0,1,2,3,4,8,9,11]
Output: false
Explanation: There is no way to jump to the last stone as the gap between the 5th and 6th stone is
too large.
Constraints:
2 <= stones.length <= 2000
0 <= stones[i] <= 2³¹ - 1
stones[0] == 0
stones
is sorted in a strictly increasing order.
Solution Link to heading
memorized search Link to heading
We use the resutl of dfs(i, k)
to indicate whether the frog can arrived at the last stone after jumping k
steps from the i
th stone:
- if it can’t arrived at another stone by jumping
k
steps from thei
th stone,return false;
- otherwise, we denote the index of new stone reached by jumping
k
steps from thei
the stone asnew_idx
, if the frog can reach the last stone by jumpingk - 1
ork
ork + 1
steps, then the result ofdfs(i, k)
istrue
.
Boundary condition: if (idx == stones.size() - 1) return true;
, andk
must not be 0
, or return false;
dynamic programming Link to heading
We denote dp[i][k]
as whether the i
th can be reached by jumping k
steps from the pre_idx
th stone(pre_idx = ump[stones[i] - k]
), the corresponding staet transfer equation is: dp[i] = dp[pre_idx][k] || dp[pre_idx][k - 1] || dp[pre_idx][k + 1];
dp[0][0] = true;
bfs Link to heading
It’s actually another form of memorized search. The visited
array is vector<vector<bool>> visited(stones.size(), vector<bool>(stones.size() + 1, false));
Note update visited
when pushing pair into q
.
Code Link to heading
memorized search Link to heading
class Solution {
public:
bool dfs(int start_idx, int mv_step, vector<int> &stones, unordered_map<int, int> &ump, vector<vector<int>> &cache) {
if (start_idx == stones.size() - 1) {
return true;
}
if (mv_step <= 0) {
return false;
}
if (ump.find(stones[start_idx] + mv_step) != ump.end()) {
if (cache[start_idx][mv_step] > -1)
return cache[start_idx][mv_step];
int new_idx = ump[stones[start_idx] + mv_step];
cache[start_idx][mv_step] = dfs(new_idx, mv_step - 1, stones, ump, cache) || dfs(new_idx, mv_step, stones, ump, cache) || dfs(new_idx, mv_step + 1, stones, ump, cache);
return cache[start_idx][mv_step];
}
return false;
}
bool canCross(vector<int> &stones) {
unordered_map<int, int> ump;
for (int i = 0; i < stones.size(); ++i) {
ump[stones[i]] = i;
}
vector<vector<int>> cache(stones.size(), vector<int>(stones.size() + 1, -1));
return dfs(0, 1, stones, ump, cache);
}
};
dynamic programming Link to heading
class Solution {
public:
bool canCross(vector<int> &stones) {
unordered_map<int, int> ump;
for (int i = 0; i < stones.size(); ++i) {
ump[stones[i]] = i;
}
vector<vector<bool>> dp(stones.size(), vector<bool>(stones.size() + 1, false));
dp[0][0] = true;
for (int i = 1; i < stones.size(); ++i) {
for (int k = 1; k <= i; ++k) {
if (ump.find(stones[i] - k) != ump.end()) {
int pre_idx = ump[stones[i] - k];
dp[i][k] = dp[pre_idx][k] || dp[pre_idx][k - 1] || dp[pre_idx][k + 1];
}
}
}
for (int k = 1; k < stones.size(); ++k) {
if (dp[stones.size() - 1][k]) {
return true;
}
}
return false;
}
};
bfs Link to heading
class Solution {
public:
bool canCross(vector<int> &stones) {
if (stones[1] > 1) {
return false;
}
vector<vector<bool>> visited(stones.size(), vector<bool>(stones.size() + 1, false));
visited[1][1] = true;
unordered_map<int, int> ump;
for (int i = 0; i < stones.size(); ++i) {
ump[stones[i]] = i;
}
queue<pair<int, int>> q;
q.push({1, 1});
while (!q.empty()) {
auto [idx, mv_step] = q.front();
q.pop();
if (idx == stones.size() - 1)
return true;
for (int i = mv_step + 1; i > 0 && i >= mv_step - 1; --i) {
if (ump.find(stones[idx] + i) != ump.end()) {
int new_idx = ump[stones[idx] + i];
if (visited[new_idx][i] == false) {
visited[new_idx][i] = true;
q.push({new_idx, i});
}
}
}
}
return false;
}
};