Description Link to heading

1310. XOR Queries of a Subarray (Medium)

You are given an array arr of positive integers. You are also given the array queries where queries[i] = [leftᵢ, rightᵢ].

For each query i compute the XOR of elements from leftᵢ to rightᵢ (that is, arr[leftᵢ] XOR arr[leftᵢ + 1] XOR ... XOR arr[rightᵢ] ).

Return an array answer where answer[i] is the answer to the ith query.

Example 1:

Input: arr = [1,3,4,8], queries = [[0,1],[1,2],[0,3],[3,3]]
Output: [2,7,14,8]
Explanation:
The binary representation of the elements in the array are:
1 = 0001
3 = 0011
4 = 0100
8 = 1000
The XOR values for queries are:
[0,1] = 1 xor 3 = 2
[1,2] = 3 xor 4 = 7
[0,3] = 1 xor 3 xor 4 xor 8 = 14
[3,3] = 8

Example 2:

Input: arr = [4,8,2,10], queries = [[2,3],[1,3],[0,0],[0,3]]
Output: [8,0,4,4]

Constraints:

  • 1 <= arr.length, queries.length <= 3 * 10⁴
  • 1 <= arr[i] <= 10⁹
  • queries[i].length == 2
  • 0 <= leftᵢ <= rightᵢ < arr.length

Solution Link to heading

According to the range of the data of the problem, we need an algorithm with $O(n)$ or $O(n\log_2 n)$ time complexity.

Consuming the property of xor: $A \oplus B\oplus A = B$, it’s similar to the property $A + B - A = B$ of prefix sum. So we can use a prefix xor array to reduce the time complexity.

Code Link to heading

class Solution {
  public:
    vector<int> xorQueries(vector<int> &arr, vector<vector<int>> &queries) {
        int n = arr.size();
        vector<int> prefix(n + 1);
        for (int i = 1; i <= n; ++i) {
            prefix[i] = (prefix[i - 1] ^ arr[i - 1]);
        }
        vector<int> res(queries.size());
        for (int i = 0; i < queries.size(); ++i) {
            res[i] = (prefix[queries[i][1] + 1] ^ prefix[queries[i][0]]);
        }
        return res;
    }
};