Description Link to heading
1139. Largest 1-Bordered Square (Medium)
Given a 2D grid of 0 s and 1 s, return the number of elements in the largest square
subgrid that has all 1 s on its border, or 0 if such a subgrid doesn’t exist in the grid.
Example 1:
Input: grid = [[1,1,1],[1,0,1],[1,1,1]]
Output: 9
Example 2:
Input: grid = [[1,1,0,0]]
Output: 1
Constraints:
1 <= grid.length <= 1001 <= grid[0].length <= 100grid[i][j]is0or1
Solution Link to heading
We can use prefix sum to reduce coumputaional comlexity. By enumerating the length l of the square, we can find the maximum l, compare l with res.
Code Link to heading
class Solution {
public:
int largest1BorderedSquare(vector<vector<int>> &grid) {
int m = grid.size(), n = grid[0].size();
vector<vector<int>> sum_row(m, vector<int>(n + 1, 0));
vector<vector<int>> sum_col(m + 1, vector<int>(n, 0));
for (int i = 0; i < grid.size(); i++) {
for (int j = 1; j <= n; j++) {
sum_row[i][j] = sum_row[i][j - 1] + grid[i][j - 1];
}
}
for (int i = 1; i <= m; i++) {
for (int j = 0; j < n; j++) {
sum_col[i][j] = sum_col[i - 1][j] + grid[i - 1][j];
}
}
int res = 0;
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
for (int l = res + 1; l <= std::min(i, j); l++) {
if (sum_col[i][j - 1] - sum_col[i - l][j - 1] == l && sum_row[i - 1][j] - sum_row[i - 1][j - l] == l && sum_col[i][j - l] - sum_col[i - l][j - l] == l && sum_row[i - l][j] - sum_row[i - l][j - l] == l)
res = std::max(l, res);
}
}
}
return res * res;
}
};